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Minimum Velocity Increment Solution for
Two-Impulse Coplanar Orbital Transfer

SAMUEL P. ALTMAN* AND JOSEF S. PISTINER"^
United Aircraft Corporate Systems Center, Windsor Locks, Conn.

The most general statement of the planar orbital transfer problem defines a trajectory with
arbitrarily specified end points located on elliptical (or other conic) orbits with noncoincident
apsidal axes. This report presents complete and explicit optimum solutions of the two-impulse
orbital transfer problem based on a minimum total velocity increment criterion. By use of
hodograph (velocity) parameters, the total velocity increment for transfer is expressed as a
function of one independent variable (i.e., one of the transfer orbit hodograph parameters) and
the trajectory end-point conditions. In addition to the formulation of an eighth-order
(octic) polynomial equation providing interior minima, the absolute total velocity increment
minimum is determined by comparing the velocity increments at the end points of the
variable parameter range with those obtained from the octic. As a special case, complete
analytic solutions and attendant transfer characteristics are presented graphically for transfer
between any specified trajectory end points lying on circular orbits.
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Nomenclature

terms defining the polynomial coefficients K and
K as functions of the end-point condition

coefficient of the velocity increment equation
coefficient of the velocity increment equation
velocity parameter of the orbit, defined by Eq.

CD
coefficient of the velocity increment equation
total potential and kinetic energy of the orbital

body
eccentricity of the ellipse
coefficients of the general octic equation, where

i = 0, 1, 2, ... 8
mass of the orbital body
velocity parameter of the orbit, defined by Eq.

.(2)
with subscript 1 or 2, radial distance between the

gravitational centers of the orbital and celes-
tial bodies; with all other subscripts, nondi-
mensional ratio

normalized circular orbit velocity at the final
transfer point ( = v&/vc\)

orbital period
transfer time interval
normalized initial velocity increment (=

linear velocity
magnitude of the vector difference between two

linear velocities
normalized final velocity increment (= Av2/t>ci)
velocity parameter of the transfer orbit, normal-

ized with respect to the circular orbit velocity
at the initial transfer point ( = CT/VCI)

velocity parameter of the transfer orbit, normal-
ized with respect to the circular orbit velocity
at the final transfer point ( = CT/VCZ)

normalized velocity parameter of the transfer
orbit (= RT/VCI)

linear velocity, normalized with respect to the
circular orbit velocity at the initial transfer
point (i.e., ZTI = VT\/VCI)

angular difference between the apsidal lines of
the initial orbit and the transfer orbit at
perigee, with sense established by that order

Subscripts
A
B
c
LL
r
T
UL
1
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angular difference between the apsidal lines
of the transfer orbit and the final orbit at
perigee, with sense established by that order

coefficients of the reduced octic equation, where
i = 0, 1, 2, ... 8

gravitational constant for the given celestial
body

angular difference between the transfer orbit
phases for the two transfer points

normalized transfer time
true anomaly of the body in orbit
apsidal line of the orbit at perigee

initial orbit
final orbit
circular orbit
lower limit
radial
transfer orbit
upper limit
point' of transfer from the initial orbit to the

transfer orbit
point of transfer from the transfer orbit to the

final orbit
normal

I. Introduction

ORBITAL transfer of space vehicles constitutes one of
the most basic problems in astronautics. In particular,

for chemical propulsion systems, those transfer conditions
that require the least (or minimum) total velocity change,
and consequently minimum fuel mass,1 are of special interest.

The potential field of the attracting center in the two-body
transfer problem can be considered due to a regular spherical
body of uniform mass distribution or due to a nonregular
body of nonuniform mass distribution. In the latter case,
the orbital figure in inertial space can be closely approximated
by a Keplerian orbit lying within an orbital plane, with apsidal
line and line-of-nodes rotating as a result of the harmonics of
the potential field. In this paper, the orbital transfer problem
is considered only between coplanar orbits, neglecting the
apsidal line and nodal line rotations due to the potential field
harmonics.

For the problem so defined, it has been shown previously2

that orbital transfer will be achieved with minimum total
velocity change by the use of one or more instantaneous
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Table 1 Analytic relations for point-to-point transfer
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velocity increments rather than a velocity change continuous
in time. Actually, the velocity change will occur during a
finite burning time; however, its approximation by instan-
taneous velocity increments will be valid if the thrust-to-
weight ratio is relatively high. Some study3"7 has established
that minimum total velocity change for coplanar orbital
transfer is provided by use of two or three instantaneous
velocity increments. Consequently, the general ease of two-
impulse orbital transfer is studied here.

The general coplanar orbital transfer problem is defined
by the following two classes: 1) the terminal (or end) points
of the transfer trajectory are free, i.e., may be selected a
postiori to provide a desired minimum total velocity change;
and 2) the terminal points of the transfer trajectory are fixed
a priori and the consequent minimum total velocity change
determined.

For example, consider transfer between the elliptical orbits
shown in Fig. la. Assuming that the end points of the com-
plete transfer trajectory need only lie anywhere on orbits A
and B, what is the transfer trajectory (and number of im-
pulses) that requires the minimal total velocity change? To
date, adequate solutions have been obtained only for special,
or restricted, orbital conditions.5"8 For example, if the space
figures of orbits A and B are aligned with coincident apsidal

a) WITH NONALIGNED APSIDAL LINES

I

b) WITH COINCIDENT APSIDAL LINES

Fig. 1 Geometry of the orbital transfer problem

lines, as shown in Fig. Ib, solutions have been obtained for
both the number of impulses and the location of end points
that provide the desired minimum total velocity change.
Such solutions are of decided interest, since they are the
asymptotic limits on minimum velocity changes which may be
realizable in practice.

On the other hand, if the terminal points are specified a
priori, what transfer trajectory between these points will
require the minimum total velocity change with two im-
pulses? The first problem class is only one special case of the
more general problem of fixed end points.

Most current work, including that of the authors, to obtain
these most general solutions have been limited to two-incre-

, ment transfer trajectories. Then the transfer trajectory is a
segment of a transfer orbit upon which the given end points
are located. Most current work, excluding that of the
authors, for solutions to this two-increment transfer has
been based upon Vargo's problem statement.9 Such work8-10

necessarily has required original and careful application of
variational principles. In essence, Vargo's problem statement
is comprised of 1) one equation for the total velocity change
(i.e., the sum of the velocity increments at the two end points)
as a function of the given end-point conditions and two ap-
parently independent variables, subject to 2) auxiliary equa-
tions expressing the constraints imposed by the given end-
point conditions.

Actually, only one variable is truly independent, because of
the presence of the auxiliary conditions. To date, analyses
based upon this problem statement have provided only
limited success in obtaining desired general solutions.

Study of the complete transfer problem from the viewpoint
of the guidance and control system designer led the authors to
the use of orbital parameters, with the conic parameters
transformed into holograph parameters.11"13 This approach
enabled a problem statement that exploits orbital relations
between position and velocity coordinates. In essence, this
problem statement is comprised of one equation for the total
velocity change as a function of the given end-point conditions
and one independent variable. This independent variable is
one of three parameters defining the transfer orbit. The
other two parameters are dependent variables that do not
enter into the total velocity change equation, by virtue of the
orbital relations expressed in the modified polar hodograph.12-13

Consequently, extremal solutions are obtainable by use of the
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Table 2 Nondimensional relations for point-to-point transfer
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differential calculus, without recourse to the variational
calculus.

By use of the hodograph problem statement, this paper pre-
sents the following general and special solutions of the mini-
mum velocity increment for orbital transfer: 1) the eighth-
order polynomial (or octic) equation for general solutions for
transfer between coplanar, nonaligned elliptical orbits; 2)
the eighth-order polynomial equation for transfer solutions
between circular orbits; and 3) the transfer orbit variable,
transfer time, and minimum velocity increments (in graphical
form) for end points on circular orbits, where the initial orbit
radius is less than the final orbit radius (i;e., n < r2). Pro-
vision of absolute minima by the solutions of the polynomial
equation is investigated and the conditions of validity
established.

The analysis results enable solution for minimum total
velocity increment transfer directly from given trajectory
end-point conditions. Alsor the graphical presentation of
solutions for circular orbit transfer is discussed briefly.

II. Equation for the Total Velocity Increment

Study of the orbital transfer problem indicated that a new
analytical approach would be desirable. Consequently, the
use of the orbital hodograph was proposed in Ref. 11. It
was shown that a planar orbit can be represented uniquely by
the vehicle velocity components along the radial line between
the vehicle center of mass and the celestial body center and
along the normal to that radial line in the plane of the orbit.

In the most general problem for coplanar two-impulse
transfer, the initial and final orbits and the initial and final
transfer points are given and not selectable as convenient.
The most pertinent analytical expressions of this point-to-
point transfer problem are presented in Table 1 for use in the
optimization. Note that the basic relations [Eqs. (1A-1F)]
are functions of the independent variable CT and the trajec-
tory end-point conditions only. The other two parameters of
the transfer trajectory (RT} ^T) are dependent upon the
variable CT) as defined by Eqs. (1G-1I). As shown pre-
viously, the following velocity parameters of the orbit are
constant in magnitude:

CD
(2)

C =

R = [(2E/m) + C2]1/2

The analytic relations of Table 1 are shown in nondimensional
form in Table 2. Since this paper develops the minimum total
velocity change for transfer, Eqs. (IB-ID) [or(lB, 2B, and
2C) ] are directly useful for the optimization process.

III. Conditions for Minimum Velocity Solutions

An equation for the total velocity increment AvT as a func-
tion of the transfer orbit hodograph parameter CT is available
by use of Eqs. (IB-ID). The region of values for CT is

bounded, so that the functional relation must be studied at 1)
interior points of relative minima, and 2) the end points of the
bounded region for CT. Note that CT must always be a real
number, since it represents a physical velocity.

The interior maxima and minima of AvT occur at values of
CT which are positive real roots of

(d/dCT)(AvT) = 0 (3)

Only one of these roots provides the smallest interior value of
AvT. However, it is possible that the neighborhood of one or
both end points may provide still smaller values of AvT than
obtained from Eq. (3), as illustrated in Fig. 2. In this figure,
both end-point values of AvT and their neighborhoods are
smaller than any interior minima. Consequently, it is clear
that the end-point values that bound the region of CT also
must be determined. .... That is, the authors are interested in
defining the least and the largest possible values of CT for a
given set of boundary conditions (given vci, r0, cr). These
given boundary conditions define the end points for all
possible orbits (regardless of conic space figure). First, con-
sider the least possible value, with reference to applicable
geometric conditions of the orbital hodograph.

For given values of vei and vez < vei (i.e., r0 < I), the transfer
angle a will be varied from TT to 0 to obtain the complete region
of possible Cr2. As shown in Fig. 3a, only one value of CV2

exists for a = TT; that is,

or

x2 = (1 + r0
2)/2

In this case, <J>TI •'•=* 0 so that 4>Ti — cr — IT.

(4)

(5)

^--INTERIOR MAX
INTERIOR _^_

MAX /^L
INTERIOR

MIN

-'NTERIOR MAX

ENDPOINT
MIN

LOWER
LIMIT

UPPER
LIMIT

Fig. 2 Hypothetical function with end point absolute
minimum



438 S. P. ALTMAN AND J. S. PISTINER AIAA JOURNAL

Fig. 3 Hodograph
conditions for mini-
mum CT(vci > rc2;

RT < CT)

b)o-<|80°

As the required transfer angle decreases from a = TT, the
least possible value of CT for each required a value is obtained
by selecting $n = 0, if possible, as shown in Fig. 3b. Upon
study of the transfer hodograph geometry, it is clear that
any value of <j>Ti other than zero will result in a value of CT
greater than this least value. By use of Eq. (II),

(Vci2 — Cr2) coso- = t'c22 — Cr2 (6)

since

CQ$<pT2 = COSO"

The resulting solution for Cr2 is then
— coso-1rCttaVfr*2)— \ ———~———

L 1 — coso- " Vcl*

or

— coso-

(7)

(8)1 — coso-

Equation (7) provides the least possible value for CV2 until

the value of a is obtained where Cr
2 = (

Fig. 4a, when
r0

2 — coso- 1
^.2 ____ ———————————————————————————————— ———— .__

2

T, as shown in

or

1 — coso-

cr = arc cos(2r0
2 — 1) (10)

A hodograph circle tangent to the origin represents a para-
bolic orbit. If the circle center continues to be lowered with
the same given value of RT, so that the hodograph circle
crosses the vr axis, then hyperbolic orbits are defined. Con-
sequently, the least possible value of Cr2 for an elliptical
transfer orbit when a < arc cos(2r0

2 — 1) must be greater
than Cr2 = vci2/2. In this case (see Fig. 4b)0n ^ 0, so that

CTET =

and consequently

Since

and

fa = arc coslfei2 - CT
2)/CTRT)]

in this case, the least value of CT
2 (when r0 < 1) is

2 _ (^l2 + ^c22) — ̂ C2[2(l + COSO-)]1/2

T 1 — coso-

(11)

(12)

or

- r0[2(l + coso-)]1/2

1 — coso-

(13)

(14)

(15)

The largest possible value of Cr2, for given vci, vcZ, and or is
obtained in a similar fashion. However, all transfer orbits
obtained with the largest possible value of Cr2 will be ellipti-
cal, because such transfer hodographs will never intersect the
vr axis. Consequently, in this case, the analytical expression
will be continuous for all o-.

All analytic definitions for the least and the largest possible
values of Cr2, for any value of r0, are presented in Tables 3
and 4. Note that the restriction of the least possible value of
CT to elliptical transfer orbits is for convenience only. Further
study of the variation of AvT as a function of CT

2 shows that
hyperbolic transfer orbits will require a greater total velocity

Table 3 CV2 end points (vc2 < vci or r0 < 1)

Least value of Cr2:

Cr2 =
o2 —— dZ COSO-

1 — COSO-

2 — coso-
1 — coso-

foi TT ^ o- ^ arc cos(2r0
2 — 1)

or r0
2 ^ i(l + coso-)

Cr
2 =

+ coso-)]1/2

1 — COSO"

(1 + yp2) - r0[2(l + coso-)]1/2

1 — cosa

for arc cos(2rfl
2 - 1) > o- > 0

or r0
2 < 4(1 + coso-)

Largest value of

Vcl* — Vc2 COSO-

1 — coso-

— fp2 COSO-

1 — COSo-

for - > 0

(3A)

(3B)

(30)

(3D)

(3E)

(3F)
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Table 4 CTZ end points (vcz > vci or r0 > 1)

439

Least value of CTZ:

r 2 VC12 — VC22 COSO-

°2 1 — COSO-

1 — r0
2 coso-x2 - — —— - ———

1 — COSo-

1 — COSO-

(1 + r0
2) - r0[2(l + cosa

1 — COSO"

for TT

or r0
2

- coso-)]1/2

)]!/.

/2 - r0
2\

^ <y ^ arc cos ( 2 )

. 2
~ 1 + coso-

(O M 2•<£ — / o
" 2 '"

1 + coso-

> o- > 0

Largest value of CTZ

2 — flcl2 COSO-

1 — COSO-

ro' coso-
1 — COSo-

for - > 0

(4A)

(4B)

(40)

(4D)

(4E)

(4F)

increment than the elliptical transfer orbits. Also, since
A^r is a continuous function of CT, the interior minimum will
be established as the absolute minimum if it is shown to be
smaller than at the end points.

IV. General Solution for Nonaligned Elliptical
Orbits

Equations (IB-ID) are available for minimization of the
total velocity increments for nonaligned elliptical orbits. The
total velocity increment must be minimized with respect to the
hodograph parameter CT. When the required optimum
value of CT is obtained, the two remaining dependent parame-
ters (RT, ^T) are defined by Eqs. (1G-1I). Also, the various
velocity vector relations at each transfer point can be found
by use of the analytic relations of Table 2 and Ref. 13.

Those values of CT which yield interior minimum and maxi-
mum values of AvT are obtained as the positive real roots of
Eq. (3). Use of Eqs. (IB-ID) in Eq. (3) results, upon reduc-
tion, in the eighth-order polynomial (or octic) Eq. (5A)
shown in Table 5. (Note that the terms Ci and c2 are defined
in Table 1.) The constant coefficients K* (i = 0,1, 2, ... 8) are
defined by the boundary conditions of the problem, i.e., the
initial transfer point 1 on the initial orbit A and the final trans-
fer point 2 on the final orbit B. The one positive real root of
the polynomial equation, which results in the minimum total
velocity increment Az>r, provides the relative minimum
within the interior of the realizable region for CT. If this
value of AVT is smaller than the Aw^ solutions for the end-
point values of CT, then that root is the absolute minimum
velocity increment solution.

Machine computation for this absolute minimum will pro-
vide direct solution by use of Eqs. (IB-ID, 6, 3A-3F, 4A-4F,
and 5A) for the specific trajectory end-point conditions. In
addition, it would be desirable to determine those conditions
(in analytic form) for which the interior minimum provides
the absolute minimum solution. Further investigation by
machine computation certainly could answer this question,
although further analysis might provide such conditions in
explicit form without machine computation.

V. Special Solution for Circular Orbits

In order to demonstrate the usefulness of this optimization
study, the polynomial equation for the general solution [Eq.
(5A)] was reduced to that of Eq. (6A) (Table 6) for the
special solution defining optimum transfer between circular
orbits. If both the initial and final orbits are circular, then
GI = c2 = 0. Also, all constant coefficients Ki (i = 0,1, 2, . . .

8) simplify considerably, K6 = 0, and all coefficients can be
reduced further by the factor 4 sinV. Note that all constant
coefficients Ki (or K») are functions of the transfer angle a and
the circular orbit velocity ratio r0.

Machine solutions were obtained for Eq. (6A) and cor-
responding end points for r0 < 1. It was determined that the
absolute minimum always is provided by an interior point
resulting from solution of the polynomial equation. For ex-
ample, Figs. 5 and 6 provide minimum total velocity incre-
ment solutions of the transfer orbit for a = 50°. In Fig. 5,
the hodograph characteristics x, y, and QT for the transfer
orbits that require the least total velocity increment are pre-
sented as functions of the velocity ratio r0. Also, the least
permissible value XLL and the greatest permissible value XUL
of the possible range of the variable x for the given end-point
conditions of r0 and a are presented as dotted lines. Then
the region lying between these curves contains all permissible
values for solution; obviously, the curve for optimum x lies
entirely within this region.

In Fig. 6, the velocity characterises z, u, w, and u + w are
presented as functions of r0 for the hodograph solutions of x
shown in Fig. 5. The total velocity increment (u + W)LL re-

Fig. 4 Hodograph
conditions for mini-
mum CT(VCI > vcz;

RT = CT)
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Table 5 The eighth-order polynomial for general solution
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K2x2 = 0 (5A)
where

K8 = A[(G2 - B2) + 4A(D - H)]
K-j = 4A[2A(J - E) + (£>G - BH)] + [BG(G - B)]
K& = 2A[4(BJ - EG) + (GJ - BE)] + [DG2 - B2H]
K5 = 4A[2F(G - B) + (DJ - EH)] + [2BG(J - E) -f B2J - EG2]
Ki = A[(J2 - E2) - SF(D - H)] + [F(G2 - B2)] + [2(DGJ - BEH)]
K, = -4F[2A(J - E) + (DG - BH)] - [2EJ(G - B)] -f [BJ2 - E2G]
K2 = 2F[~4(BJ - EG) + (GJ - BE)] + [DJ2 - E2H]
#1 = -4F[2F(G - B) + (DJ - j&ff)] - [EJ(J - E)]
KQ = F[(J2 — E2) + 4F(D — H)]

and

^4 = (1 — coso-)2

B = (2ci/CA)(l - coso-)
D = (l/CA2)Ki4 sin2o- + 2C,42(1 - coso-)(t;ci2 coso- - vc2

2) + ci2]
E = (2/CA)[vci* sinV - a(vci2 coso- - vc*2)]
F = Vd4 — 2VC12VC2* COSO- + Vc^

G = (2c2/C*)(coso- ~ 1)
H = (l/(V)bc24 sin2o- 4- 2CjB

2(coso- - l)(vci2 - vc2
2 coso-) +>2

2]
J = (2/Cs)[v^ sin2o- — C2(i>ci2 — vczz coso-)]

(SB)
(SO)
(5DJ
(5E)
(5F;
(5G)
(5H)
(51)
(5J)

(5K)
(5L)

(5M)
(5N)
(50)
(5P)
(5Q)
(5R)

suiting from ZLL and the total velocity increment (u + W)UL
resulting from XUL are presented as dotted lines. Note that
the curve for optimum u + w lies below both dotted lines. All
permissible values of x in Fig. 5 provide u + w values that lie
above this optimum curve. Consequently, the absolute
minimum total velocity increment is provided by the interior
point resulting from the solution of the polynomial equation.

Solutions for x resulting in minimum velocity increment
transfer have been obtained by digital computation for 1)
<r = 10° to 170° in 10° steps and <r = 170° to 178° in 2° steps;
and 2) r0 = 0.1 to 0.9 in 0.1 steps and r0 = 0.9 to 0.98 in 0.02
steps. In addition to these solutions, all transfer orbit and
transfer point characteristics were determined and presented
in graphical form.14 These data can be presented graphically
as a function of the transfer angle a with the circular orbit
velocity ratio ro as parameter^ or in converse form. The opti-

mum transfer orbit variable, the total velocity increment, and
the transfer time are presented in Figs. 7-9, respectively, as a
function of <7, for ro varied from 0.1 to 0.9. Study of these
data results in the following observations:

1) For selectable initial and final trajectory end points,
the required velocity increment (u + w) is minimum when
o- = 180° (i.e., Hohmann transfer).

2) For selectable initial and final trajectory end points,
the required velocity increment (u + w) for a values about
180° is not much greater than the Hohmann transfer incre-
ment (e.g., an increase of less .than 10% for 0- =.160°),

3) For given cr, the initial velocity increment (u) is a
monotonically increasing function of decreasing values of r0,
whereas the final velocity increment (w) is not.

4) For given r0, the transfer time is minimum for r0 less
than about 0.3 and for a about 100° to 120°.

Table 6 The eighth-order polynomial equation for circular orbit solution

-f K2x2 K0 = 0

where

K8 = 4A2(D - H) = 12sinV(l - coso-)4(l - r0
2)

K7 = SA2(J - E) = 16sinV(l - coso-)4(r0
3 - 1)

K6 = 0
K5 = 4A(DJ - EH)

= 8 sinV(l - coso-)2(l - r0)[2(l - cos«r)(l + r0
2)(l + r, + r0

2) - 3r0
2 sinV]

EU = A [ ( J 2 - E2) - SF(D - H)]
= 4 sin2o-(l - coso-)2[6(r0

2 - 1)(1 - 2r0
2 coso- + r0

4) + (r0
6 - l)sinV]

K3 = SAF(E - J)
= 16 sin2o-(l - coso-)2(l - rG

3)(l - 2r0
2 coso- + r0

4)
K2 = DJ2 - E2H

= 4 sin4o-(l - coso-)(r0
4 - I)[r0

2(l + 3 coso-) - 2(r0
4 +1)]

Ki = 4F(EH - DJ) - EJ(J - E)
= 8sinV(l - r0)(l - 2r0

2 coso- + r0
4)[3r0

2 sinV - 2(1 + r0 + ^o2)(l + r0
2)(l - coso-)] -f- 8r3 sin6o-(l - r0

3)
Ko - F[(J2 - E2) + 4F(D - H)]

= 4 sinV(l - 2r0
2 coso- + r0

4)[(r0
6 - 1) sinV + 3(1 - r0

2)(l - 2r0
2 coso- + r0

4)l

(6A)

(6B)
(60)
(6D)
(6E)

(6F)

(6G)

(6H)

(61)

(6J)
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XUL
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0.4 0.6
'0

0.8 1.0

Fig. 5 Hodograph characteristics for optimum transfer
between circular orbits (<r = 50°)

The solutions are presented for 0 < <r < ir. Since Eq.
(6A) is a function of sin2w<7 and cosher, it is identical for a and
(27T — 0-), that is,

sin2"(27r — or) = sin2"o-
COSn(27T — 0") = COSTC<T

where n = 1, 2, 3, or 4. Consequently, the solutions for x are
also valid for (2ir - a). Also, Eqs. (2B) and (20) for u and w,
respectively, provide identical solutions of u and w for a and
(2ir - a).

The solutions provided in this report have been obtained for
0 < r0 < 1.0. Solutions for the hodograph parameter CT re-
ferred to the final circular orbit velocity vcZ can be obtained
directly for r0 > 1.0 from the solution x for 0 < r0 < 1.0 (Fig.
7). It has been determined by analysis that the numerical
solution for #' = CT/vci is obtained directly from the solution
for x vs r0 by selecting the abscissa value as the reciprocal of
the given velocity ratio r0 > 1.0. For example, suppose the
solution x' is required when r0 = 2 and a- = 50°. Referring
to Fig. 5 or 7, the value of #' is obtained at abscissa value of
0.5; i.e.,z' = 1.38.

Fig. 7 Variation of hodograph parameter x

VI. Summary and Conclusions
The total velocity increment required for two-impulse co-

planar orbital transfer is defined by an equation that is an
algebraic function of the orbital hodograph parameter CT and
the trajectory end-point conditions. Consequently, the
minimum total velocity increment solutions for specified
trajectory end-point conditions are attainable directly by
methods of the differential calculus. As a result, interior
minima are provided by an eighth-order polynomial (or octic)
equation with constant coefficients. Determination of the
absolute minimum is obtained by comparison of the total
velocity increments calculated by use of one of the positive
real roots of the octic equation and the end points of the
permissible range of CT. Since all transfer characteristics are
functions of the trajectory end-point conditions and the
value of CT giving this absolute minimum, complete data on
the minimum total velocity increment problem are available.

Fig. 6 Velocity characteristics for optimum transfer be-
tween circular orbits (<r — 50°)
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Fig. 8 Variation of total velocity increment
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Fig. 9 Variation of transfer time

Note that the solutions are directly and explicitly obtainable
for arbitrarily specified trajectory end points.

The octic Eq. (5A) enables solutions to be obtained for the
general problem of transfer between end points lying on co-
planar nonaligned elliptical orbits. Reduced forms of this
octic equation are available directly for special classes of
trajectory end points, e.g., transfer between circular orbits
or between a circular and an elliptical orbit. The reduced octic
Eq. (6A) has been found to provide the direct solution ^ for
transfer between circular orbits, since the absolute minima
are always interior to the permissible range of CT for this
problem. The normalized optimum transfer orbit variable x,
the initial, final, and total velocity increments u,w-,u + w, and
the transfer time r are presented in Figs. 7-9 as a function of
the transfer angle cr(for 0 < o- < 180°), with the circular
orbit velocity ratio r0 (for 0 < r0 < 1.0) as parameter. The
complete optimum transfer orbit and transfer point charac-
teristics were determined and presented in Ref. 14. More-
over, it has been shown that the solutions for x, u, and w ob-
tained for 0 < o- < TT also are valid for TT < a < 2ir by mirror
symmetry about <r = TT. Also, solutions for CT (normalized
with respect to the initial circular orbit velocity vei) obtained
for 0 < r0 < 1.0 provide solutions for CT (normalized with re-
spect to the final circular orbit velocity vc2) valid for r0 > 1.0.

Study of the solutions for transfer between circular orbits
confirms previous work5 that has shown that the minimum
total velocity increment (for two-impulse transfer with
selectable end points) is obtained at o- = TT. However, it also
is clear that transfer by use of an anomaly difference a up to
±20° from Hohmann transfer (a- = TT) results in less than

10% increase in the required total velocity increment.
Consequently, trajectory end-point conditions for transfer
may deviate appreciably from the Hohmann transfer condi-
tions without undue or intolerable penalties upon propulsion
and vehicle staging design.

Further study, by analysis and machine computation,
should provide extensive knowledge of minimum total ve-
locity increment solutions for the general problem of trajec-
tory end points lying on elliptical orbits. In any case, the
availability of algebraic equations, which provide explicit
solutions directly, enables serious consideration of on-board
guidance systems with present state-of-the-art system and
component design techniques. It is suggested that versatile
man-machine systems for transfer guidance can be conceived
upon development of control and command display systems
and computation systems that mechanize the equations of the
orbital hodograph and the optimization process.
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